Found 7 result(s)
Regular Seminar Sean Hartnoll (Cambridge)
at: 14:00 room G.O.Jones 610  abstract: Quantum mechanical theories describing large N by N matrices of oscillators can lead to an emergent space as N > infinity. In the most fully fledged version, the emergent space is dynamical and gravitating. However, there are also simpler, lower dimensional versions of this phenomenon. One of the simplest occurs in the socalled quantum Hall matrix model, in which a 2 dimensional space emerges and supports ChernSimons dynamics. I will describe how this solvable model leads to insights about the emergence of space from matrices. In particular, I will describe how the emergent spatial locality is reflected in the entanglement structure of the ground state of theory. 
Regular Seminar Sean Hartnoll (University of Cambridge)
at: 14:00 room Maths MB503 and zoom  abstract: (Email m.godazgar@qmul.ac.uk for zoom link) Abstract: The exterior dynamics of black holes has played a major role in holographic duality, describing the approach to thermal equilibrium of strongly coupled media. The interior dynamics of black holes in a holographic setting has, in contrast, been largely unexplored. I will describe recent work investigating the classical interior dynamics of various holographic black holes. I will discuss the nature of the singularity, the absence of Cauchy horizons and a new kind of chaotic behavior that emerges in the presence of charged scalar fields. 
Regular Seminar Sean Hartnoll (Cambridge Univ. DAMTP)
at: 13:45 room K0.20  abstract: Quantum mechanical theories describing large N by N matrices of oscillators can lead to an emergent space as N > infinity. In the most fully fledged version, the emergent space is dynamical and gravitating. However, there are also simpler, lower dimensional versions of this phenomenon. One of the simplest occurs in the socalled quantum Hall matrix model, in which a 2 dimensional space emerges and supports ChernSimons dynamics. I will describe how this solvable model leads to insights about the emergence of space from matrices. In particular, I will describe how the emergent spatial locality is reflected in the entanglement structure of the ground state of theory. 
Regular Seminar Sean Hartnoll (ITP Stanford University)
at: 13:30 room zoom 871 9223 5980  abstract: The exterior dynamics of black holes has played a major role in holographic duality, describing the approach to thermal equilibrium of strongly coupled media. The interior dynamics of black holes in a holographic setting has, in contrast, been largely unexplored. I will describe recent work investigating the classical interior dynamics of various holographic black holes. I will discuss the nature of the singularity, the absence of Cauchy horizons and a new kind of chaotic behavior that emerges in the presence of charged scalar fields. [please email a.held@imperial.ac.uk for zoom link or password] 
Regular Seminar Sean Hartnoll (DAMTP)
at: 13:15 room 423  abstract: I will review recent results at strong and weak coupling in N=4 SYM theory at finite temperature. I will point out that retarded correlators have a qualitatively different analytic structure in the weak a strong coupling limits and will argue that this either necessitates a phase transition in the theory or requires that we revise our current understanding of weakly coupled plasmas. 
Regular Seminar Sean Hartnoll (DAMTP)
at: 14:00 room 112  abstract:

Regular Seminar Sean Hartnoll (Cambridge)
at: 16:30 room H503  abstract: Generalised black holes have a horizon given by an arbitrary Einstein manifold. I will describe a criterion for the classical stability of these black holes. Roughly, spherical horizons are stable but lemonshaped horizons can be unstable. In Antide Sitter space, these black holes are dual to gauge theory on a curved background given by the same Einstein manifold. I will argue that the dual thermal field theory effect is a novel phase transition induced by inhomogeneous Casimir pressures and characterised by a condensation of pressure. 