Journal Club Benjamin Doyon (King's College London)
at: 15:45 room Zoom, instructions in abstract abstract: | The Euler-scale power-law asymptotics of space-time correlation functions in many-body systems, quantum and classical, can be obtained by projecting the observables onto the hydrodynamic modes admitted by the model and state. This is the Boltzmann-Gibbs principle; it works for integrable and non-integrable models alike. However, certain observables, such as some order parameters in thermal of generalised Gibbs ensembles, do not couple to any hydrodynamic mode: the Boltzmann-Gibbs principle gives zero. I will explain how hydrodynamics can still give the leading exponential decay of order parameter correlation functions. With the examples of the quantum XX chain and the sine-Gordon model, I will explain how large deviations of the spin and U(1) current fluctuations are related to such exponential decay. Exact predictions are given by the ballistic fluctuation theory based on generalised hydrodynamics. In the XX model, this is in agreement with results obtained previously by a more involved Fredholm determinant analysis and other techniques, and even gives a new formula for a parameter regime not hitherto studied. In the sine-Gordon model, these are new results, inaccessible by other techniques. Works in collaboration with Giuseppe Del Vecchio Del Vecchio, and Márton Kormos. ---- Part of the London Integrability Journal Club. Please register at integrability-london.weebly.com if you are a new participant. The link will be emailed on Tuesday. |