10.10.2023 (Tuesday)

Black hole from matrices for dummies

Regular Seminar Masanori Hanada (QMUL)

at:
14:00 QMUL
room MB-503
abstract:

We will give an intuitive explanation of why and how matrices (or, more precisely, large-N gauge theories) can describe a black hole, without assuming knowledge of quantum mechanics and holographic duality. Firstly, we explain an intuitive picture inroduced by Witten: diagonal entries of matrices describe particles and off-diagonal entries describe strings connecting particles. When many strings are excited, a lot of energy and entropy are packed in a small region and form black hole. Next, we consider classical dynamics of matrix model. Specifically, we colide two black holes. Using the energy conservation, equipartition law of energy and elementary school math, we show that black hole becomes colder after the merger. Matrices know black hole's negative heat capacity! To gain a little bit more intuition, we will look at ants. Collective behavior of ants has a striking similarity to black hole. The mapping rule is ant -> particle, pheromone -> string, and ant trail -> black hole. Tuning parameters such as temperature or each ant's laziness, we can obtain three kinds of phase diagrams. Each of them has a counterpart in large-N gauge theories. If time permits, I will explain the mechanism applicable to strongly-coupled and highly quantum regime needed for quantitative agreement with Einstein gravity. (This part requires a good understanding of undergraduate-level quantum mechanics.)