Found 2 result(s)
Regular Seminar Gabriel Wong (Oxford)
at: 14:00 room LIMS abstract: | This is part of HoloUK2. Registration is free but space is limited, so please register at https://sites.google.com/view/holouk/home/holouk-2. One of the major insights gained from holographic duality is the relation between the physics of black holes and quantum chaotic systems. This relation is made precise in the duality between two dimensional JT gravity and random matrix theory. In this work, we generalize this to a duality between AdS3 gravity and a random ensemble of approximate CFT's. The latter is described by a combined tensor and matrix model, describing the OPE coefficients and spectrum of a theory that approximately satisfies the bootstrap constraints. We show that the Feynman diagrams of the random ensemble produce a sum over 3 manifolds that agrees with the partition function of 3d gravity. A crucial element of this dictionary is the Virasoro TQFT, which defines the bulk gravitational path integral via the cutting and sewing relations of topological field theory. This TQFT has gravitational edge modes degrees of freedom whose entanglement gives rise to gravitational entropy. |
Regular Seminar Gabriel Wong (Fudan U)
at: 14:00 room G O Jones 610 abstract: | What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. We derive the Modular hamiltonian for the Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an E-brane. |