Found 2 result(s)
Exceptional Seminar Brian Swingle (U. Maryland)
at: 14:00 room GO Jones 610 abstract: | We analyze a model of qubits which we argue has an emergent quantum gravitational description similar to the fermionic Sachdev-Ye-Kitaev (SYK) model. The model is generic in that it includes all possible q-body couplings, lacks most symmetries, and has no spatial structure, so our results can be construed as establishing a certain ubiquity of quantum holography in systems dominated by many-body interactions. We will discuss implications for Hamiltonian complexity, the factorization problem in quantum gravity, and quantum simulations of holography. Based on 2311.01516 with Mike Winer. |
Regular Seminar Brian Swingle (Maryland U.)
at: 14:00 room zoom abstract: | Ensembles of quantum chaotic systems are expected to exhibit random matrix universality in their energy spectrum. The presence of this universality can be diagnosed by looking for a linear in time 'ramp' in the spectral form factor, but for realistic systems this feature is typically only visible after a sufficiently long time. Given the wide prevalence of this random matrix behavior, it is natural to ask for an effective field theory which predicts the ramp and computes corrections to it arising from physical constraints. I will present such an effective theory based on fluctuating hydrodynamics. The theory can also be adapted to describe the effects of spontaneous symmetry breaking on spectral correlations. [for zoom link please contact jung-wook(dot)kim(at)qmul(dot)ac(dot)uk] |