Found at least 20 result(s)

12.11.2024 (Tuesday)

Tidal Love numbers and scattering amplitudes

Regular Seminar Julio Parra-Martinez (IHES)

at:
14:30 IC
room H503
abstract:

Tidal Love numbers quantify the deformability and dissipative properties of compact gravitating objects. However, even in classical GR, they undergo renormalization group running due to the nonlinearity of gravity. In this talk I will explain some exact results about their running, which can be extracted by matching calculations of scattering amplitudes in black hole perturbation theory and point-particle effective theories. Due to the universality of EFT, the results have applications to the physics of black holes, neutron stars, and even binary systems. For the specific case of black holes, our matching calculation also provides the precise values of both static and dynamical Love numbers in various dimensions.

29.10.2024 (Tuesday)

The Landau Paradigm for Categorical Symmetries

Regular Seminar Sakura Schafer-Nameki (Oxford)

at:
14:30 IC
room H503
abstract:

The Landau paradigm of phase transitions states that any continuous (second order) phase transition is a symmetry breaking transition. Originally this was formulated for symmetries that form groups, e.g. the critical Ising model is the transition between the $\mathbb{Z}_2$ symmetric and spontaneously broken phases. In recent years a new class of symmetries, called categorical or non-invertible, have emerged in quantum systems -- with impact ranging from high energy and condensed matter physics to mathematics, and quantum computing. I will explain how these symmetries generalize the Landau paradigm and how new phases and phase transitions are predicted, which have potential future experimental implementations in cold atom systems.

28.10.2024 (Monday)

Lonti: Infrared aspects of gravity in asymptotically flat spacetimes

Regular Seminar Ana-Maria Raclariu (King's College London)

at:
10:30 Other
room LIMS
abstract:

These lectures will review recent developments surrounding the infrared sector of gravity in (3+1)-dimensional asymptotically flat spacetimes (AFS). In the first part of the course we will introduce soft theorems which govern the low-energy scattering of massless particles such as photons and gravitons. We will explain how these are related to classical observables known as memory effects and discuss their application to computing infrared-finite collider observables and gravitational waveforms. In the second part, we will introduce the notion of asymptotic or large-gauge symmetries and use it to derive the infinite-dimensional asymptotic symmetry algebra of (3+1)-dimensional AFS, also known as the BMS algebra. We will show that the conservation laws associated with these symmetries are equivalent to the Weinberg soft graviton theorem. Time-permitting, we will discuss some implications of these ideas for non-AdS holography.

22.10.2024 (Tuesday)

Singularity theorems for worldvolume energy inequalities

Regular Seminar Eleni-Alexandra Kontou (KCL)

at:
14:00 QMUL
room MB-503
abstract:

The original singularity theorems of Penrose and Hawking have, in their hypotheses, pointwise energy conditions violated by some classical and all quantum fields. If we want to extend their validity to semiclassical gravity, these conditions have to be replaced by weaker ones. In this talk I will first discuss recent results for singularity theorems with weakened energy conditions, some of which are obeyed by quantum fields. Then I will argue for the need of singularity theorems with worldvolume averaged energy conditions both in the timelike and the null case. For each case I will present progress and open questions.

21.10.2024 (Monday)

Lonti: Infrared aspects of gravity in asymptotically flat spacetimes

Regular Seminar Ana-Maria Raclariu (King's College London)

at:
10:30 Other
room LIMS
abstract:

These lectures will review recent developments surrounding the infrared sector of gravity in (3+1)-dimensional asymptotically flat spacetimes (AFS). In the first part of the course we will introduce soft theorems which govern the low-energy scattering of massless particles such as photons and gravitons. We will explain how these are related to classical observables known as memory effects and discuss their application to computing infrared-finite collider observables and gravitational waveforms. In the second part, we will introduce the notion of asymptotic or large-gauge symmetries and use it to derive the infinite-dimensional asymptotic symmetry algebra of (3+1)-dimensional AFS, also known as the BMS algebra. We will show that the conservation laws associated with these symmetries are equivalent to the Weinberg soft graviton theorem. Time-permitting, we will discuss some implications of these ideas for non-AdS holography.

14.10.2024 (Monday)

Lonti: Infrared aspects of gravity in asymptotically flat spacetimes

Regular Seminar Ana-Maria Raclariu (King's College London)

at:
10:30 Other
room LIMS
abstract:

These lectures will review recent developments surrounding the infrared sector of gravity in (3+1)-dimensional asymptotically flat spacetimes (AFS). In the first part of the course we will introduce soft theorems which govern the low-energy scattering of massless particles such as photons and gravitons. We will explain how these are related to classical observables known as memory effects and discuss their application to computing infrared-finite collider observables and gravitational waveforms. In the second part, we will introduce the notion of asymptotic or large-gauge symmetries and use it to derive the infinite-dimensional asymptotic symmetry algebra of (3+1)-dimensional AFS, also known as the BMS algebra. We will show that the conservation laws associated with these symmetries are equivalent to the Weinberg soft graviton theorem. Time-permitting, we will discuss some implications of these ideas for non-AdS holography.

07.10.2024 (Monday)

Lonti: Infrared aspects of gravity in asymptotically flat spacetimes

Regular Seminar Ana-Maria Raclariu (King's College London)

at:
10:30 Other
room LIMS
abstract:

These lectures will review recent developments surrounding the infrared sector of gravity in (3+1)-dimensional asymptotically flat spacetimes (AFS). In the first part of the course we will introduce soft theorems which govern the low-energy scattering of massless particles such as photons and gravitons. We will explain how these are related to classical observables known as memory effects and discuss their application to computing infrared-finite collider observables and gravitational waveforms. In the second part, we will introduce the notion of asymptotic or large-gauge symmetries and use it to derive the infinite-dimensional asymptotic symmetry algebra of (3+1)-dimensional AFS, also known as the BMS algebra. We will show that the conservation laws associated with these symmetries are equivalent to the Weinberg soft graviton theorem. Time-permitting, we will discuss some implications of these ideas for non-AdS holography.

02.10.2024 (Wednesday)

Non-invertible coset symmetry and fractionalization

Regular Seminar Po-Shen Hsin (KCL)

at:
15:30 QMUL
room GO Jones 610
abstract:

Coset symmetry arises in many systems such as Higgs phases of gauge theories and quantum spin liquids. When the coset is quotient by a non-normal subgroup, coset symmetry becomes a non-invertible symmetry. I will discuss properties of coset non-invertible symmetry and its fractionalization using examples in field theories and lattice models, and comment on the dynamical implication. The talk is based on arXiv: 2405.20401 and work in progress with Ryohei Kobayashi and Carolyn Zhang

26.04.2024 (Friday)

Non-invertible symmetries for qubits

Exceptional Seminar Shu-Heng Shao (Stony Brook)

at:
11:30 QMUL
room G. O. Jones 610
abstract:

I'll discuss the exact non-invertible Kramers-Wannier symmetry of 1+1d lattice models on a tensor product Hilbert space of qubits. This symmetry mixes with lattice translations, and obeys a different algebra compared to the continuum one. The non-invertible symmetry leads to a constraint similar to that of Lieb-Schultz-Mattis, implying that the system cannot have a unique gapped ground state. It is either in a gapless phase or in a gapped phase with three (or a multiple of three) ground states, associated with the spontaneous breaking of the non-invertible symmetry.

26.03.2024 (Tuesday)

Entanglement, soft modes and celestial holography

Exceptional Seminar Ana-Maria Raclariu (Amsterdam University)

at:
14:00 QMUL
room SMS MB-503
abstract:

In this talk I will start by revisiting the calculation of entanglement entropy in free Maxwell theory in 3+1 dimensional Minkowski spacetime. I will characterize the soft sector associated with a subregion and demonstrate that conformally soft mode configurations at the entangling surface, or equivalently correlated fluctuations in the large gauge charges of the subregion and its complement, give a non-trivial contribution to the entanglement entropy across a cut of future null infinity. I will conclude with some comments on the holographic description of bulk subregions in asymptotically flat spacetimes.

19.12.2023 (Tuesday)

Topological 5d N=2 Gauge Theory: Novel Floer Homologies, their Dualities, and an A-infinity Category of Three-Manifolds

Exceptional Seminar Meng-Chwan Tan (Singapore Natl. U.)

at:
11:00 KCL
room K0.16
abstract:

This talk is about our latest work in [arXiv:2311.18302]. We shall show how one can define novel gauge-theoretic Floer homologies of four, three and two-manifolds that are associated with Vafa-Witten, Hitchin and complexified BF configurations, respectively, from the physics of a certain topologically-twisted 5d N=2 gauge theory. Via topological invariance and a 5d “S-duality”, we shall derive novel Atiyah-Floer correspondences of these gauge-theoretic Floer homologies which relate them to symplectic intersection Floer homologies of Higgs bundles, and a web of relations involving their loop/toroidal group generalizations and their Langlands dual. Lastly, through a soliton string theory interpretation of the 5d theory, we shall derive a Fukaya-Seidel type A-infinity category of Hitchin configurations on three-manifolds and its Atiyah-Floer correspondence. We therefore furnish purely physical realizations and generalizations of the mathematical conjectures and constructions of Haydys [1], Wang [2] and Abouzaid-Manolescu [3], and more.

13.12.2023 (Wednesday)

Bootstrapping Smooth Line Operators in Chern-Simons-Matter CFTs

Regular Seminar De-liang Zhong (Imperial College, London)

at:
14:00 KCL
room S0.12
abstract:

We study Chern-Simons theories at large N with either bosonic or fermionic matter in the fundamental representation. We will show that for smooth conformal line operators, their spectrum and shape dependence can be effectively bootstrapped using minimal inputs.

16.11.2023 (Thursday)

London Gravity Day

Regular Seminar Organizers Toby Wiseman - Pau Figueras (LIMS)

at:
12:00 Other
room LIMS, Royal Institution
abstract:

A day for gravity

27.09.2023 (Wednesday)

TBA

Conference Kuo-Wei Huang (University of Southampton )

at:
14:00 Other
room LIMS - Royal Institution
abstract:

TBA. This is part of the first HoloUK meeting. Attendance is free but registration is needed because of space limitations. Please register at https://sites.google.com/view/holouk/home/holouk-1.

26.06.2023 (Monday)

String compactifications, closed differential forms, and mapping cones

Regular Seminar Li-Sheng Tseng (UC Irvine)

at:
15:00 IC
room H503
abstract:

In compactifications over smooth geometrical spaces, closed differential forms can take on a prominent role. For instance, closed forms can represent the geometrical structure of special holonomy manifolds and also fluxes that are present in the compactifications. In this talk, we will describe novel geometrical invariants that arise on manifolds with a distinguished closed form. In particular, we will show that there are natural cohomologies of mapping cone type that in general are dependent on the distinguished closed form. These cohomologies provide another tool to help count the massless scalars that arise in compactifications.

05.12.2022 (Monday)

Brane Brick Models for Fano 3-Folds and Ypk Manifolds

Regular Seminar Rak-Kyeong Seong (Ulsan National Institute of Science and Technology)

at:
14:00 IC
room B1004
abstract:

In this talk, I will discuss the construction of 2d (0,2) supersymmetric gauge theories corresponding to the 18 smooth Fano 3-folds and the families of Y^(p,k)(CP1xCP1) and Y^(p,k)(CP2) Sasaki-Einstein 7-manifolds. These 2d (0,2) gauge theories can be considered as the worldvolume theories of D1-branes probing toric Calabi-Yau 4-folds. The talk will illustrate how the map between gauge theory and the corresponding geometry is considerably simplified by a Type IIA brane configuration called brane brick models.

09.11.2022 (Wednesday)

Celestial amplitudes from flat space limits of AdS/Witten diagrams

Regular Seminar Ana-Maria Raclariu (Amsterdam)

at:
13:45 KCL
room K0.16
abstract:

The search for pragmatic observables of quantum gravity remains at the forefront of fundamental physics research. A large set of ideas collectively known as the gauge-gravity duality have proven fruitful in tackling this problem. While such a duality is believed to universally govern gravitational theories, its nature in theories of gravity that describe our universe to a good degree of approximation is still little understood. In this talk I will discuss efforts in formulating a holographic correspondence for gravity in four-dimensional asymptotically flat spacetimes. The proposed dual theory lives on a two-dimensional celestial sphere at infinity and is constrained by a wide range of symmetries. I present recent evidence for this proposal by showing that it arises naturally in a flat space limit of AdS/CFT. I will illustrate this construction with two related examples: the propagation of a particle in a shockwave background and the high-energy scattering of 2 particles.

04.11.2022 (Friday)

Chern-Simons Gravity and Neutrino Self-Interactions

Exceptional Seminar Cyril Creque-Sarbinowski (Center for Computational Astrophysics at the Flatiron Institute)

at:
12:00 IC
room Blackett 1004
abstract:

Dynamical Chern-Simons gravity (dCS) is a four-dimensional parity-violating extension of general relativity. Current models predict the effect of this extension to be negligible due to large decay constants f close to the scale of grand unified theories. Here, we present a construction of dCS allowing for much smaller decay constants, ranging from sub-eV to Planck scales. Specifically, we show that if there exists a fermion species with strong self-interactions, the short-wavelength fermion modes form a bound state. This bound state can then undergo dynamical symmetry breaking and the resulting pseudoscalar develops Yukawa interactions with the remaining long-wavelength fermion modes. Due to this new interaction, loop corrections with gravitons then realize a linear coupling between the pseudoscalar and the gravitational Chern-Simons term. The strength of this coupling is set by the Yukawa coupling constant divided by the fermion mass. Therefore, since self-interacting fermions with small masses are ideal, we identify neutrinos as promising candidates. For example, if a neutrino has a mass mν ≲meV and the Yukawa coupling is order unity, the dCS decay constant can be as small as f∼10^3mν ≲eV. We discuss other potential choices for fermions.

02.11.2022 (Wednesday)

Symmetry TFT and Non-invertible Symmetries (seminar cancelled)

Regular Seminar Sakura Schafer-Nameki (University of Oxford)

at:
13:30 IC
room H503
abstract:

The seminar has been cancelled.

22.06.2022 (Wednesday)

Spacetime, Quantum Mechanics and Scattering Amplitudes

Colloquium Nima Arkani-Hamed (IAS)

at:
16:15 QMUL
room Arts 2 Building Lecture Theatre
abstract:

As part of the SAGEX Closing Meeting being held at Queen Mary's University of London in June 2022, we are delighted that world-renowned theoretical physicist, Professor Nima Arkani-Hamed will deliver the meeting's colloquium. We welcome undergraduate and postgraduate students, and researchers and academics to attend this exciting event. Please register at: https://www.eventbrite.co.uk/e/sagex-colloquium-nima-arkani-hamed-tickets-256058035477